High Performance, Down Cold

AT-XP® Anchoring Adhesive for Cracked and Uncracked Concrete

The latest innovation from Simpson Strong-Tie, AT-XP® anchoring adhesive has been formulated for high-strength anchorage of threaded rod and rebar into concrete under a wide range of conditions. AT-XP adhesive dispenses easily in cold or warm environments with little to no odor, and when mixed properly is a teal color for easy post-installation identification.

Code-listed per IAPMO UES ER-263 in accordance with ICC-ES AC308 and IBC 2009 requirements for cracked and uncracked concrete in static or seismic conditions, AT-XP anchoring adhesive has demonstrated superior performance in reduced-temperature testing (14°F (-10°C)), has NSF/Standard 61 certification (43.2 in²/1000 gal), and is made in the USA.

Features:

- AT-XP adhesive has passed the demanding adversecondition tests of ICC-ES AC308 pertaining to reduced temperature, elevated temperature and long-term creep
- Code-listed per IAPMO UES ER-263
- Can be used under static and seismic loading conditions in both cracked and uncracked concrete
- Low-odor formula dispenses easily at below-freezing temperatures without the need to warm cartridge
- Cures in substrate temperatures as low as 14°F in 24 hours or less
- Easiest hole-cleaning method no power brushing needed
- When properly mixed, adhesive will be a teal color for easy identification
- Available in 9.4 oz., 12.5 oz. and 30 oz. cartridges for jobsite versatility

Applications:

- · Threaded rod anchoring into concrete
- · Rebar doweling into concrete
- · Suitable for horizontal, vertical and overhead applications

For installation instructions, visit www.strongtie.com or our Anchoring and Fastening Systems for Concrete and Masonry catalog.

AT-XP® Adhesive Cartridge System

	moonto ount	inge eyelen	•		
Model No.	Capacity ounces (cubic in.)	Cartridge Type	Carton Qty.	Dispensing Tool	Mixing Nozzle
AT-XP10	9.4 (16.9)	coaxial	12	CDT10S	
AT-XP13	12.5 (22.5)	side-by-side	10	ADT813S	AMN19Q
AT-XP30	30 (54)	side-by-side	5	ADT30S, ADTA30P or ADT30CKT	

- 1. Cartridge estimation guides are available at www.strongtie.com/apps.
- 2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at **www.strongtie.com**.
- Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions.
 Modification or improper use of mixing nozzle may impair AT-XP adhesive performance.
- 4. One AMN19Q nozzle and one nozzle extension is supplied with each cartridge.

1

Cure Schedule

Base M Tempe		Gel Time (min.)	Cure Time (hrs.)
°F	°C	(111111.)	(1118.)
14	-10	30	24
32	0	15	8
50	10	7	3
68	20	4	1
86	30	1.5	30 min.
100	38	1	20 min.

For water-saturated concrete (including damp or water-filled holes), the cure times must be doubled.

Design Information

Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

Characteristic			Units	Nominal Anchor Diameter (inch) / Rebar Size							
Gilaracteristic	Symbol l	UIIIIS	3 ₈ / #3	1/2 / #4	5 ₈ / #5	3/4 / #6	7/8 / #7	1 / #8	1-1/4 / #10		
	Installation Information										
Drill Bit Diameter for Threaded Rod		d _{hole}	in.	7/16	9/16	11/16	13/16	1	11/8	1 3/8	
Drill Bit Diameter for Rebar			in.	1/2	5/8	3/4	7/8	1	11/8	1 3/8	
Maximum Tightening Torque	Maximum Tightening Torque			10	20	30	45	60	80	125	
Permitted Embedment Depth Range ²	Minimum	h _{ef}	in.	23/8	23/4	31/8	3 1/2	33/4	4	5	
Fermitted Embedment Depth Kange	Maximum	h _{ef}	in.	71/2	10	121/2	15	171/2	20	25	
Minimum Concrete Thickness			in.								
Critical Edge Distance			in.	3 x h _{ef}							
Minimum Edge Distance		C _{min}	in.	13/4							
Minimum Anchor Spacing		S _{min}	in.		6						

- The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308.
- Minimum and maximum embedment depths are set so as to fit the ICC-ES AC308 design model

Tension Design Data for Threaded Rod in Normal-Weight Concrete^{1,11}

	Charactariatia		Cumbal	Unito		Nor	ninal An	chor Dia	meter (i	inch)		
	Characteristic		Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4	
		Steel Strength in	Tension									
Threaded Rod	Minimum Tensile Stress Area		A _{se}	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
	Tension Resistance of Steel: - ASTM F1554, Grade 36				4,525	8,235	-, -	-,	-,	35,150	,	
	- ASTM A193, Grade B7		- N _{sa}	lb.	9,750	17,750	28,250	41,750	57,750	75,750	121,125	
	- Type 410 Stainless (ASTM A193, Grade	B6)	INSa	ID.	8,580	15,620	24,860	36,740	50,820	66,660	106,590	
	- Type 304 and 316 Stainless (ASTM A19	3, Grade B8 & B8M)			4,445	8,095	12,880	19,040	26,335	34,540	55,235	
	Strength Reduction Factor - Steel Failure		φ	-				0.758				
		Strength in Tension	n (2,500 psi ≤ f'c ≤ 8,000 psi)									
Effectiveness Factor - U	ncracked Concrete		k _{uncr}	-				24				
Effectiveness Factor - C	racked Concrete		k _{cr}					17				
Strength Reduction Fac			φ	-	0.6510							
		th in Tension (2,500	psi ≤ f'c ≤	8,000	osi)							
Temp. Range 1 for	Characteristic Bond Strength ⁷		$\tau_{k,uncr}$	psi	1,390	1,590	1,715	1,770	1,750	1,655	1,250	
Uncracked Concrete ^{2,4,5}	Torrintion Embourneric Doptil Hungo	Minimum	- h _{ef}	h _{ef} in.	23/8	23/4	31/8	31/2	33/4	4	5	
		Maximum	''ет		71/2	10	121/2	15	171/2	20	25	
Town Dongs 1 for	Characteristic Bond Strength ^{7,12,13,14}			psi	1,085	1,035	980	950	815	800	700	
Temp. Range 1 for Cracked Concrete ^{2,4,5}	Permitted Embedment Depth Range	Minimum	h _{ef}	in.	3	3	31/8	31/2	33/4	4	5	
Graciica Controlo		Maximum	''ef	111.	71/2	10	121/2	15	171/2	20	25	
Temp. Range 2 for	Characteristic Bond Strength ⁷			psi	1,390	1,590	1,715	1,770	1,750	1,655	1,250	
Uncracked Concrete ^{3,4,5}	Permitted Embedment Depth Range	Minimum	- h _{ef}	in.	23/8	23/4	31/8	31/2	33/4	4	5	
Chordonod Comoroto		Maximum	''ет		71/2	10	121/2	15	171/2	20	25	
Temp. Range 2 for	Characteristic Bond Strength ^{7,12,13,14}		$\tau_{k,cr}$	psi	1,085	1,035	980	950	815	800	700	
Cracked Concrete ^{3,4,5}	Permitted Embedment Depth Range	Minimum	- h _{ef}	in.	3	3	31/8	31/2	33/4	4	5	
Graciica Controlo		Maximum	-		71/2	10	121/2	15	171/2	20	25	
	Bond Strength in Tension - Bond	Strength Reduction	Factors fo	r Contin	uous Sp	ecial Ins	spection					
Strength Reduction Fac	Strength Reduction Factor - Dry Concrete			-	0.65 ⁹ 0.55 ⁹					55 ⁹		
Strength Reduction Factor - Water-Saturated Concrete			φ _{sat}	-	0.45°							
Additional Factor for Water-Saturated Concrete				-	0.54 ⁶ 0.77 ⁶ 0.96 ⁶					96 ⁶		
	Bond Strength in Tension - Bon	d Strength Reductio	n Factors f	or Perio	dic Spe	cial Insp						
Strength Reduction Fac			Φdry	-			0.559			0.	45 ⁹	
	tor - Water-saturated Concrete		φ _{sat}	-				0.459				
Additional Factor for Wa	ater-saturated Concrete		K _{sat}	-	0.46 ⁶ 0.65 ⁶				0.5	81 ⁶		

- The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.
- Temperature Range 1: Maximum short-term temperature of 110°F. Maximum long-term temperature of 75°F.
 Temperature Range 2: Maximum short-term temperature of 180°F.
- Maximum long-term temperature of 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperatures are constant temperatures over a significant time period.
- In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by $K_{sat}.$
- For anchors installed in overhead and subjected to tension resulting from sustained loading, multiply the value calculated for ${\rm N}_{\rm a}$ according to ICC-ES AC308 by 0.75.
- The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of φ .

- The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of $\boldsymbol{\phi}.$
- 10. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition A are met, refer to Section D4.4 to determine the appropriate value of φ . If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of φ.
- 11. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.
- 12. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1/2", 5/8", 3/4" and 1" anchors must be multiplied by $\alpha_{N.seis} = 0.85$.
- 13. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1-¼ anchors must be multiplied by α_{N,sels} = 0.75.

 14. For anchors installed in regions assigned to Seismic Design Category C, D, E or F,
- the bond strength values for % anchors must be multiplied by $\alpha_{N,seis}$ = 0.59.

Design Information

Tension Design Data for Rebar in Normal-Weight Concrete^{1,11}

	Characteristic			Units	Rebar Size							
	Guaracteristic		Symbol	UIIIIS	#3	#4	#5	#6	#7	#8	#10	
		Steel Strength in T	ension									
Rebar -	Minimum Tensile Stress Area			in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.27	
	Tension Resistance of Steel - Rebar (ASTM A615 Grade 60)			lb.	9,900	18,000	27,900	39,600	54,000	71,100	114,000	
	Tension Resistance of Steel - Rebar (AST)	/I A706 Grade 60)	- N _{sa}	ID.	8,800	16,000	24,800	35,200	48,000	63,200	101,600	
	Strength Reduction Factor - Steel Failure		φ	-				0.658				
	Concrete Breakout	Strength in Tension (2,500 psi	≤ f'c ≤	8,000 ps	si)						
Effectiveness Factor - U	ncracked Concrete		k _{uncr}	-				24				
Effectiveness Factor - C	racked Concrete		k _{cr}					17				
Strength Reduction Fac	tor - Breakout Failure		φ	-				0.6510				
	Bond Streng	th in Tension (2,500	psi ≤ f'c ≤	8,000 p	osi)							
T D 4 ′	Characteristic Bond Strength ⁷		$\tau_{k,uncr}$	psi	1,355	1,365	1,355	1,330	1,280	1,215	1,025	
Temp. Range 1 for Uncracked Concrete ^{2,4,5}	Permitted Embedment Depth Range	Minimum	- h _{ef}	in.	23/8	23/4	31/8	31/2	3¾	4	5	
Chorachea Controle	Termitted Embedment Depth Hange	Maximum	''ef		71/2	10	121/2	15	171/2	20	25	
Taman Daman 1 fam	Characteristic Bond Strength ^{7,12,13,14}			psi	1,085	1,035	980	950	815	800	700	
Temp. Range 1 for Cracked Concrete ^{2,4,5}	Permitted Embedment Depth Range	Minimum	- h _{ef}	in.	3	3	31/8	31/2	3¾	4	5	
		Maximum	''et	111.	71/2	10	121/2	15	171/2	20	25	
Temp. Range 2 for	Characteristic Bond Strength ⁷	Strength ⁷			1,355	1,365	1,355	1,330	1,280	1,215	1,025	
Uncracked Concrete ^{3,4,5}	Permitted Embedment Depth Range	Minimum	- h _{ef}	in.	23/8	23/4	31/8	31/2	33/4	4	5	
		Maximum	riei		71/2	10	121/2	15	171/2	20	25	
Temp. Range 2 for	Characteristic Bond Strength ^{7,12,13,14}		$\tau_{k,cr}$	psi	1,085	1,035	980	950	815	800	700	
Cracked Concrete ^{3,4,5}	Permitted Embedment Depth Range	Minimum	h _{ef}	in.	3	3	31/8	31/2	3¾	4	5	
		Maximum			71/2	10	121/2	15	171/2	20	25	
	Bond Strength in Tension - Bond	Strength Reduction I	actors for	Contin	uous Sp	ecial Ins	<u> </u>					
Strength Reduction Factor - Dry Concrete			Φdry	-	0.65 ⁹ 0.55 ⁹					55 ⁹		
Strength Reduction Factor - Water-Saturated Concrete			φ _{sat} K _{sat}	-	0.45 ⁹							
Additional Factor for Water-Saturated Concrete				-	0.546 0.776 0.966							
	Bond Strength in Tension - Bon	d Strength Reduction	Factors fo	r Perio	dic Spe	cial Insp						
Strength Reduction Fac	· · · · · · · · · · · · · · · · · · ·		Φdry	-			0.559			0.	45 ⁹	
	tor - Water-Saturated Concrete		φ _{sat}	-				0.459				
Additional Factor for Wa	ater-Saturated Concrete		K _{sat}	-	0.4	46 ⁶		0.65^{6}		0.	81 ⁶	

- The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.
- Temperature Range 1: Maximum short-term temperature of 110°F. Maximum long-term temperature of 75°F.
- Temperature Range 2: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperatures are constant temperatures over a significant time period.
- In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} -For anchors installed in overhead and subjected to tension resulting from sustained loading, multiply the value calculated for N_a according to ICC-ES AC308 by 0.75.
- The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of φ .

- The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of φ .
- 10. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition A are met, refer to Section D4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of φ.

 11. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.
- 12. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for #4, #5, #6 and #8 rebar anchors must be multiplied by $\alpha_{\text{N,seis}}$ = 0.85.
- 13. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for #10 rebar anchors must be multiplied by $\alpha_{N,sels} = 0.75$.

 14. For anchors installed in regions assigned to Seismic Design Category C, D, E or F,
- the bond strength values for #7 rebar anchors must be multiplied by $\alpha_{N,seis}$ = 0.59.

Design Information

Shear Design Data for Threaded Rod in Normal-Weight Concrete^{1,5}

Characteristic Sy			Ilmita	Nominal Anchor Diameter (inch)								
			Units	3/8	1/2	5/8	3/4	7/8	1	11/4		
	Steel Strength in Shea	ar										
	Minimum Shear Stress Area	A _{se}	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969		
	Shear Resistance of Steel: - ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720		
	- ASTM A193, Grade B7		lb.	4,875	10,650	16,950	25,050	34,650	45,450	72,675		
	- Type 410 Stainless (ASTM A193, Grade B6)	- V _{sa}	ID.	4,290	9,370	14,910	22,040	30,490	40,000	63,955		
	- Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140		
Threaded Rod	Reduction for Seismic Shear - ASTM F1554, Grade 36			0.85								
	Reduction for Seismic Shear - ASTM A193, Grade B7			0.85								
	Reduction for Seismic Shear - Type 410 Stainless (ASTM A193, Grade B6)	$\alpha_{V,seis}^6$	-	0.85	5 0.75 0.8							
	Reduction for Seismic Shear - Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)			0.85	0.75					0.85		
	Strength Reduction Factor - Steel Failure	φ	-				0.65^{2}					
	Concrete Breakout Strength i	in Shear										
Outside Diamet	ter of Anchor	do	in.	0.375	0.5	0.625	0.75	0.875	1	1.25		
Load Bearing L	Load Bearing Length of Anchor in Shear		in.				h _{ef}					
Strength Reduction Factor - Breakout Failure		φ	-				0.70^{3}					
	Concrete Pryout Strength in	Shear										
Coefficient for Pryout Strength		k _{cp}	-				2.0					
Strength Reduc	ction Factor - Pryout Failure	φ	-				0.704					

- The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.
- 2. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 3. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 4. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 5. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.
- The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{V,seis} for the corresponding anchor steel type.

Shear Design Data for Rebar in Normal-Weight Concrete^{1,5}

	Charactaristic	Symbol	Hnito	Rebar Size								
	Characteristic Syn		Units	#3	#4	#5	#6	#7	#8	#10		
	Steel Strength in She	ar										
	Minimum Shear Stress Area	A _{se}	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.27		
Rebar	Shear Resistance of Steel - Rebar (ASTM A615 Grade 60)	V	lb.	4,950	10,800	16,740	23,760	32,400	42,660	68,580		
	Shear Resistance of Steel - Rebar (ASTM A706 Grade 60)	- V _{sa}		4,400	9,600	14,880	21,120	28,800	37,920	60,960		
nevai	Reduction for Seismic Shear - Rebar (ASTM A615 Grade 60)	6		0.56			0.80					
	Reduction for Seismic Shear - Rebar (ASTM A706 Grade 60)	α _{V,seis} ⁶		0.56			0.80					
	Strength Reduction Factor - Steel Failure	φ		0.602								
	Concrete Breakout Strength	in Shear										
Outside Diam	eter of Anchor	do	in.	0.375	0.5	0.625	0.75	0.875	1	1.25		
Load Bearing	Length of Anchor in Shear	ℓe	in.			,	h _{ef}	•				
Strength Red	uction Factor - Breakout Failure	φ	-				0.703					
	Concrete Pryout Strength i	n Shear										
Coefficient fo	Pryout Strength	k _{cp}	-				2.0					
Strength Red	uction Factor - Pryout Failure	φ	-	0.70^{4}								

- The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.
- The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.
- 3. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.
- 4. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 5. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.
- 6. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha\varsigma_{,seis}$ for the corresponding anchor steel type.

This flier is effective until December 31, 2014, and reflects information available as of December 1, 2012. This information is updated periodically and should not be relied upon after December 31, 2014; contact Simpson Strong-Tie for current information and limited warranty or see www.strongtie.com.